ICONIC REPRESENTATION TECHNIQUES FOR ION DYNAMICS IN GLASS STRUCTURES

JOHAN BIN MOHAMAD SHARIF

UNIVERSITI TEKNOLOGI MALAYSIA
UNIVERSITI TEKNOLOGI MALAYSIA

DECLARATION OF THESIS / UNDERGRADUATE PROJECT PAPER AND COPYRIGHT

Author's full name : JOHAN BIN MOHAMAD SHARIF
Date of birth : 10 JUNE 1974
Title : REPRESENTATION TECHNIQUES OF ION TRAJECTORIES IN GLASS STRUCTURE
Academic Session : 2011/2012

I declare that this thesis is classified as :

☐ CONFIDENTIAL (Contains confidential information under the Official Secret Act 1972)*
☐ RESTRICTED (Contains restricted information as specified by the organization where research was done)*
☒ OPEN ACCESS I agree that my thesis to be published as online open access (full text)

I acknowledged that Universiti Teknologi Malaysia reserves the right as follows:

1. The thesis is the property of Universiti Teknologi Malaysia.
2. The Library of Universiti Teknologi Malaysia has the right to make copies for the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

740610-04-5497

CERTIFIED BY:

SIGNATURE OF SUPERVISOR

NAME OF SUPERVISOR

NOTES : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization with period and reasons for confidentiality or restriction.
"We hereby declare that we have read this thesis and in our opinion this thesis is sufficient in terms of scope and quality for the award of the degree of Doctor of Philosophy (Computer Science)"

Signature :
Name : PM Dr Muhammad Shafie bin Ab Latiff
Date : 20/6/12

Signature
Name : PM Dr Md Asri bin Ngadi
Date : 20/6/12
BAHAGIAN A – Pengesahan Kerjasama*

Adalah disahkan bahawa projek penyelidikan tesis ini telah dilaksanakan melalui kerjasama antara __________________________ dengan __________________________

Disahkan oleh:
Tandatangan : .. Tarih :
Nama : ..
Jawatan : ..
(Cop rasmi)

* Jika penyediaan tesis/projek melibatkan kerjasama.

BAHAGIAN B – Untuk Kegunaan Pejabat Sekolah Pengajian Siswazah

Tesis ini telah diperiksa dan diakui oleh:

Nama dan Alamat Pemeriksa Luar : Prof. Madya Dr. Abdullah Zawawi bin Haji Talib
Timbalan Dekan,
Pusat Pengajian Sains Komputer,
Universiti Sains Malaysia,
11800 USM,
Pulau Pinang

Nama dan Alamat Pemeriksa Dalam : Prof. Dr. Ghazali bin Sulong
Fakulti Sains Komputer dan Sistem Maklumat,
UTM, Johor Bahru.

Dr. Shahrizal bin Sunar
Fakulti Sains Komputer dan Sistem Maklumat,
UTM, Johor Bahru.

Disahkan oleh Timbalan Pendaftar di Sekolah Pengajian Siswazah:

Tandatangan : .. Tarih :
Nama : ZAINUL RASHID BIN ABU BAKAR
ICONIC REPRESENTATION TECHNIQUES FOR ION DYNAMICS IN GLASS STRUCTURES

JOHAN BIN MOHAMAD SHARIF

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Computer Science)

Faculty of Computer Science and Information System
Universiti Teknologi Malaysia

JUNE 2012
I declare that this thesis entitled "Iconic Representation Techniques for Ion Dynamics in Glass Structures" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature
Name : JOHAN BIN MOHAMAD SHARIF
Date : 20/6/12
Dedication . . .

My Father, Hj Mohamad Sharif Bin Mohd Yusoh
My Lovely Mother, Hjh Halimatun Binti Hj Awang
 My Wife, Rohani Binti Hamdan
 My Daughter, Aisyah Binti Johan,
 Khadijah Binti Johan,
 Siti Hajar Binti Johan
 My Son, Adam Bin Johan,
 Idris Arshad Bin Johan
 My Father in-Law, Hamdan Bin Hj Junit
 My Mother in-Law, Manisah Binti Ibrahim
 All friend and colleagues
 Precious friends and sisters

Thank you for your immense love, your precious pray, supports and anything that you have done to me.

May the blessings of Allah shower upon you.
ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, first and the foremost, praise be to Allah, the Cherisher and Sustainer of this world and to the Prophet Muhammad (p.b.u.h), his family and all his companions. With the help, care and blessings of Allah, I finally succeed in doing my study from the start till the end. Special thanks to my supervisors, for his guidance, advices, patience and kindness. My warmest appreciation to my beloved parents; Mr. Mohamad Sharif bin Mohd Yusoh, Mrs. Halimatun binti Awang, Mr Hamdan bin Junit and Mrs Manisah binti Ibrahim who support me with their love, pray, support for both moral and motivation for my study. Thanks to my wife Mrs. Rohani binti Hamdan, childrens, siblings, cousins and relatives who never fail to cherish and support me. Many thanks go to my friends and colleagues for always being there and never give up in supporting me. My heart overflows with gratitude for all my friends for being supportive and my fellow postgraduate colleagues. I would like to extend my appreciation to those who involved and give a helpful hand in ensuring the success of this study. This study would not have come to fruition without all your supports. Thank you. May Allah S.W.T bless you.
ABSTRACT

Ionic conductivity in a glass structure generates electrical flows, or ion trajectories, which produce electricity. Ion trajectories with an appropriate representation technique help in understanding properties of the ionic conductivity. Most of the existing techniques employ two-dimensional graphs to represent the properties. However, some of the important properties particularly spatial structures, timelines and collaborative events could not be clearly represented. Thus, this study aims to address these drawbacks by proposing a new technique using iconic representation in three-dimensional space. The proposed technique begins by transforming a set of vectors into two iconic geometrical shapes, namely cylinder and cone in order to visualise the spatial structure such as orientation, direction and magnitude. Later, a navigation function has been used to manoeuvre a viewpoint with regards to the geometrical shapes. Next, a halo function has been employed to improve the representation of the cone by illuminating its trajectories. Subsequently, three transparency schemes have been proposed for zooming purposes to visualise the cones inside the cylinder. In addition, the trajectory of geometrical shapes has used to represent two time scales for timeline namely, the global colour time scale and the local colour time scale. The former represents a global time scale for trajectory of the cylinders, while the latter represents a local time scale for trajectory of the cones. The time scales allow the determination of time of occurrences for collaborative events such as orientation, velocity and gap. Finally, highlighted and de-highlighted functions are used to represent these collaborative events. A series of experiments have been conducted using a simulated data set to evaluate the performance of the developed technique. The experimental results have revealed that the spatial structures, timelines and collaborative events of the trajectories are precisely represented in the three-dimensional space.
ABSTRAK